產(chǎn)品別名 |
Y氨基丁酸 |
面向地區(qū) |
全國 |
在植物中,存在于細(xì)胞質(zhì)中的GAD和線粒體中的GABA-T、SSADH共同調(diào)節(jié)GABA支路代謝,其中GAD是合成GABA的限速酶。植物GAD含有鈣調(diào)蛋白(CaM)結(jié)合區(qū),GAD活性不僅受Ca2+和H+濃度的共同調(diào)控,還受到GAD輔酶——磷酸吡哆醛(PLP)以及底物谷氨酸濃度的影響。這種雙重調(diào)節(jié)機制將GABA的細(xì)胞積累與環(huán)境脅迫的性質(zhì)和嚴(yán)重程度聯(lián)系起來。冷激、熱激、滲透脅迫和機械損傷均會提高細(xì)胞液中Ca2+濃度,Ca2+與CaM結(jié)合形成Ca2+/CaM復(fù)合體,在正常生理pH條件下能夠刺激GAD基因表達,提高GAD活性;而酸性pH刺激GAD的出現(xiàn)是由于應(yīng)激降低細(xì)胞的pH,減緩細(xì)胞受到酸性危害。植物中GABA支路被認(rèn)為是合成GABA的主要途徑。目前,大多數(shù)研究集中在如何提高GAD活性實現(xiàn)GABA富集。
多胺(polyamine,PAs)包括腐胺(putrescine,Put)、精胺(spermine,Spm)和亞精胺(spermidine,Spd),其中以腐胺作為多胺生物代謝的中心物質(zhì)。多胺降解途徑是指二胺或多胺(PAs)分別經(jīng)二胺氧化酶(diamine oxidase,DAO)和多胺氧化酶(polyamine oxidase,PAO)催化產(chǎn)生4-氨基丁醛,再經(jīng)4-氨基丁醛脫氫酶(4-amino aldehyde dehydrogenase,AMADH)脫氫生成GABA的過程,多胺降解途徑終與GABA支路交匯后參與TCA循環(huán)代謝。其中二胺氧化酶和多胺氧化酶是分別催化生物體內(nèi)Put和Spd、Spm降解的關(guān)鍵酶。蠶豆發(fā)芽期間,厭氧脅迫可誘導(dǎo)多胺合成的關(guān)鍵性酶活性的提高,促進多胺的積累,同時多胺氧化酶活性也隨之提高,通過多胺降解途徑促進了GABA的合成與積累,提高了蠶豆的抗逆境能力。研究表明,大豆根中游離多胺含量在鹽脅迫下增加,DAO活力提高,GABA富集量增加11~17倍。盡管多胺降解途徑被認(rèn)為是合成GABA的另一條重要途徑,但其在單子葉植物中合成GABA的能力遠(yuǎn)低于GABA支路。
低pH下GABA會在細(xì)胞內(nèi)快速增加,這種GABA的積累在微生物和動物中也存在。植物在酸性pH下細(xì)胞內(nèi) H+隨之升高,誘導(dǎo)細(xì)胞內(nèi)GABA含量增加。該GABA的合成過程消耗H+,使得細(xì)胞內(nèi)酸化得到緩解。在微生物中也存在這種快速的反應(yīng)機制,在產(chǎn)生GABA的同時,會增加質(zhì)子呼吸鏈復(fù)合物的表達,促進ATP合成。并且上調(diào) F1F0-ATP水解酶活性,促進酸性條件下ATP依賴的H+排出過程。在動物中,細(xì)胞也會向外排出GABA和谷氨酸以此來改變細(xì)胞外環(huán)境的pH。更重要的是,GABA在生理環(huán)境下為兩性離子,因此在酸堿調(diào)節(jié)中發(fā)揮著一定作用。
GABA有助于植物對外界天敵的防御。當(dāng)昆蟲取食時由于植物受傷導(dǎo)致細(xì)胞破裂和組織受傷,這種機械切割會刺激植物中Ca2+的增加,植物在Ca2+刺激下分泌GABA作為一種抵御昆蟲取食的措施。在此過程中不存在茉莉酸類信號參與GABA的積累。昆蟲存在離子型GABA受體,其中果蠅的GABA門控氯離子通道亞基RDL(resistant to dieldrin)是許多殺蟲劑藥物的作用靶標(biāo)。GABA誘導(dǎo)使得GABA受體的單電流降低。具體為GABA在無脊椎動物中通過GABA受體門控的氯離子通道起作用,與大多數(shù)殺蟲劑相同,通過GABA受體氯離子通道,使Cl-在電化學(xué)梯度的驅(qū)使下流向下游,導(dǎo)致質(zhì)膜超極化,并抑制昆蟲取食。而在過量表達GABA的煙草植物中,接種北方線蟲,發(fā)現(xiàn)其雌性成年線蟲的繁殖能力整體下降,這種方式可以使植物達到防御天敵的效果。在對女貞子被草食女娥幼蟲取食過程中,發(fā)現(xiàn)女貞子會降低自身賴氨酸活性使得蛋白質(zhì)無營養(yǎng),而女娥幼蟲在此期間會分泌甘氨酸、β-丙氨酸、胺等分子抑制植物賴氨酸的減少,這種植物與草食昆蟲的交流過程也證明了GABA作為信號分子的功能。
———— 認(rèn)證資質(zhì) ————
最近來訪記錄