變壓吸附(Pressure Swing Adsorption.簡稱PSA),是一種新型氣體吸附分離技術,它有如下優(yōu)點:產品純度高;一般可在室溫和不高的壓力下工作,床層再生時不用加熱,產品純度高;設備簡單,操作、維護簡便;連續(xù)循環(huán)操作,可完全達到自動化。因此,當這種新技術問世后,就受到各國工業(yè)界的關注,競相開發(fā)和研究,發(fā)展迅速,并日益成熟
變壓吸附空分制氧始創(chuàng)于20世紀60年代初(Skarstrom, 1960; Guerin de Montgarenil & Domine, 1964),并于70年代實現(xiàn)工業(yè)化生產。在此之前,傳統(tǒng)的工業(yè)空分裝置大部分采用深冷精餾法(簡稱深冷法)
80年代以來至今CaX和LiX等高吸附分離性能的沸石分子篩的相繼開發(fā)利用和工藝流程的改進,使得變壓吸附空分技術得到迅速地發(fā)展,與深冷空分裝置相比,PSA過程具有啟動時間短和開停車方便、能耗較小和運行成本低、自動化程度高和維護簡單、占地面積小和土建費用低等特點。在不需要高純氧的中小規(guī)模(小于100噸/天,相當于3000Nm3/h )氧氣生產中比深冷法更具有競爭力。廣泛的應用于電爐煉鋼、有色金屬冶煉、玻璃加工、甲醇生產、炭黑生產、化肥造氣、化學氧化過程、紙漿漂白、污水處理、生物發(fā)酵、水產養(yǎng)殖、醫(yī)療和軍事等諸多領域(楊,1991; Kumar, 1996; Jee, Park, Haam & Lee,2002)。
常用的空氣分離方法是低溫精餾法分離。低溫分離方法通過壓縮循環(huán)深度冷凍的方法把空氣變成液態(tài),經過低溫精餾根據(jù)不同沸點而從液態(tài)空氣中逐步分離生產出氧氣、氮氣及氬氣等惰性氣體的設備,廣泛應用于傳統(tǒng)的冶金、新型煤化工、大型氮肥、氣體供應等領域。
其它空氣分離方法,如膜分離法、變壓吸附法(PSA)和真空變壓吸附法(VPSA)等,主要是應用于從空氣中分離單一組分。而用于半導體器件制造的高純氧、氮和氬需要低溫精餾法。同樣,稀有氣體氖、氪和氙的可行來源是也使用低溫精餾法。
因此低溫精餾法是重要的空氣分離方法。
制氮機是按變壓吸附技術設計、制造的氮氣制取設備。制氮機以進口碳分子篩(CMS)為吸附劑,采用常溫下變壓吸附原理(PSA)分離空氣制取高純度的氮氣。通常使用兩吸附塔并聯(lián),由進口PLC控制進口氣動閥自動運行,交替進行加壓吸附和解壓再生,完成氮氧分離,獲得所需高純度的氮氣。
深冷制氮不僅可以生產氮氣而且可以生產液氮,滿足需要液氮的工藝要求,并且可在液氮貯槽內貯存,當出現(xiàn)氮氣間斷負荷或空分設備小修時,貯槽內的液氮進入汽化器被加熱后,送入產品氮氣管道滿足工藝裝置對氮氣的需求。深冷制氮的運轉周期(指兩次大加溫之間的間隔期)一般為1年以上,因此,深冷制氮一般不考慮備用。而變壓吸附制氮只能生產氮氣,無備用手段,單套設備不能連續(xù)長周期運行。