甲醇部分氧化制氫的反應方程式(CH_{3}OHfrac{1}{2}O_{2}rightleftharpoons 2H_{2} + CO_{2})(Delta H^{0}= - 155kJ/mol),該反應為放熱反應。在反應過程中,甲醇與適量的氧氣發(fā)生部分氧化反應,氧氣的加入量對反應的影響至關重要。
因此需要選擇合適的催化劑和優(yōu)化反應條件來抑制副反應的發(fā)生。甲醇裂解制氫的反應方程式為CH_{3}OHrightleftharpoons CO + 2H_{2}),Delta H^{0}= + 90.7kJ/mol),同樣是吸熱反應。在高溫和催化劑的作用下,甲醇分子中的化學鍵斷裂,分解為一氧化碳和氫氣。
該反應相對簡單,但由于產物中一氧化碳含量較高,而一氧化碳會對后續(xù)的氫氣應用,如燃料電池的使用產生不利影響,因此通常需要對產物進行進一步的處理,如通過一氧化碳變換反應將一氧化碳轉化為二氧化碳和氫氣,以提高氫氣的純度和質量 。
相比之下,甲醇在常溫常壓下為液體,其密度約為 0.79g/cm3 ,便于儲存和運輸。它可以利用現(xiàn)有的液體燃料儲存和運輸基礎設施,如油罐車、管道等,大大降低了儲存和運輸成本。
同時,甲醇制氫裝置的運行維護成本也相對較低,其反應條件相對溫和,對設備的材質和耐高溫、高壓性能要求不像某些傳統(tǒng)制氫技術那么苛刻,降低了設備的維護難度和成本。甲醇制氫技術在儲存運輸、環(huán)保性和成本等方面的優(yōu)勢,使其成為一種潛力的制氫技術,有望在未來的氫能產業(yè)發(fā)展中發(fā)揮重要作用。
此外,甲醇制氫過程中會產生一定量的二氧化碳排放,雖然相較于傳統(tǒng)的化石燃料制氫方法,其二氧化碳排放量相對較低,但在全球對碳排放要求日益嚴格的背景下,如何進一步降低甲醇制氫過程中的碳排放,實現(xiàn)低碳甚至零碳制氫,也是該技術面臨的重要挑戰(zhàn)之一 。